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Abstract. The temporal dynamics of climate processes are spread across different time scales and, as such, the study of these 

processes only at one selected time scale might not reveal the complete mechanisms and interactions within and between the 

(sub-) processes. For capturing the nonlinear interactions between climatic events, the method of event synchronization has 

found increasing attention recently. The main drawback with the present estimation of event synchronization is its restriction 15 

to analyse the time series at one reference time scale only. The study of event synchronization at multiple scales would be of 

great interest to comprehend the dynamics of the investigated climate processes. In this paper, wavelet based multi-scale event 

synchronization (MSES) method is proposed by combining the wavelet transform and event synchronization. Wavelets are 

used extensively to comprehend multi-scale processes and the dynamics of processes across various time scales. The proposed 

method allows the study of spatio-temporal patterns across different time scales. The method is tested on synthetic and real-20 

world time series in order to check its replicability and applicability. The results indicate that MSES is able to capture 

relationships that exist between processes at different time scales.  

Keywords: multi-scale, event synchronization, discrete wavelet transformation, significance test 

1 Introduction  

Synchronization is a wide-spread phenomenon that can be observed in numerous climate-related processes, such as 25 

synchronized climate changes of the north and south Polar Regions (Rial 2012), see-saw relationship between monsoon 

systems (Eroglu et al., 2016), or coherent fluctuations in flood activity across regions (Schmocker-Fackel and Naef 2010) and 

among El Niño and the Indian summer monsoon (Marun and Kurths 2005; Mokhov et al., 2011). Synchronous occurrences of 

climate-related events can be of great societal relevance. The occurrence of strong precipitation or extreme runoff, for instance, 

at many locations within a short time period may overtax the disaster management capabilities. 30 
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Various methods for studying synchronization are available, based on recurrences (Marwan et al., 2007; Donner et al., 2010; 

Arnhold et al., 1999; Le Van Quyen et al., 1999; Quiroga et al., 2000; Quiroga et al., 2002; Schiff et al., 1996), phase differences 

(Schiff et al., 1996, Rosenblum et al., 1997), or the quasi-simultaneous appearance of events [Tass et al., 1998; Stolbova et al., 

2014; Malik et al., 2012; Rheinwalt et al., 2016). For the latter, the method of event synchronization (ES) has received 

popularity owing to its simplicity, in particular within the fields of brain [Pfurtscheller and Silva 1999; Krause et al., 1996) 5 

and cardiovascular research (O’Connor et al., 2013), non-linear chaotic systems (Callahan et al., 1990), and climate sciences 

(Tass et al., 1998; Stolbova et al., 2014; Malik et al., 2012; Rheinwalt et al., 2016). ES has also been used to understand driver-

response relationships, i.e. which process leads and possibly triggers another, based on its asymmetric property. It has been 

shown that, for event-like data, ES delivers more robust results compared to classical measures such as correlation or coherence 

functions which are limited by the assumption of linearity (Liang et al., 2016). 10 

Particularly in climate sciences, ES has been successfully applied to capture driver-response relationships, time delays between 

spatially distributed processes, strength of synchronization, moisture source and rainfall propagation trajectories, and to 

determine typical spatio-temporal patterns in monsoon systems (Stolbova et al., 2014; Malik et al., 2012; Rheinwalt et al., 

2016). Furthermore, extensions of the ES approach have been suggested to increase its robustness with respect to boundary 

effects (Stolbova et al., 2014; Malik et al., 2012) and number of events (Rheinwalt et al., 2016). 15 

Even though ES has been successfully used, it is yet limited by measuring the strength of the nonlinear relationship at only 

one given temporal scale, i.e. it does not consider relationships at and between different temporal scales. However, climate-

related processes typically show variability at a range of scales. Synchronization and interaction can occur at different temporal 

scales, as localized features, and can even change with time (Rathinasamy et al., 2014; Herlau et al., 2012; Steinhaeuser et al., 

2012; Tsui 2015). Features at a certain time scale might be hidden while examining the process at a different scale. Also, some 20 

of the natural processes are complex due to the presence of scale emergent phenomena triggered by nonlinear dynamical 

generating processes, long-range spatial and long-memory temporal relationships (Barrat et al., 2008). In addition, single-scale 

measures, such as correlation and ES, are valid and meaningful only for stationary systems. For non-stationary systems, they 

may underestimate or overestimate the strength of the relationship (Rathinasamy et al., 2014). 

The wavelet transform can potentially convert a non-stationary time series into stationary components (Rathinasamy et al., 25 

2014), and this can help in analysing non-stationary time series using the proposed method. 

Therefore, the multi-scale analysis of climatic processes holds the promise to better understand the system dynamics that may 

be missed when analysing processes at one time scale only (Perra et al., 2012; Miritello et al., 2013). According to this 

background, we propose a novel method, the Multi-Scale Event Synchronization (MSES) which integrates ES and wavelet 

approach in order to analyse synchronization between event time series at multiple temporal scales (Figure 1). To test the 30 

effectiveness of the proposed methodology, we apply it to several synthetic and real-world test cases. 

The manuscript is organized as follows: Section 2 describes the proposed methodology and Section 3 introduces selected case 

studies. The results are discussed in Section 4. Conclusions are summarized in Section 5.  
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2 Methods 

2.1 Discrete wavelet transform  

Wavelet analysis has become an important method in spectral analysis due to its multi-resolution and localization capability 

both in time and frequency domain. A wavelet transform converts a function (or signal) into another form which makes certain 

features of the signal more amenable to study (Addison 2005). A wavelet 𝜓(𝑡) is a localized function which satisfies certain 5 

admissibility conditions. The wavelet transform 𝑇𝑎,𝑏(𝑥) of a continuous function 𝑥(𝑡) can be defined as a simple convolution 

between 𝑥(𝑡) and dilated and translated versions of the mother wavelet 𝜓(𝑡): 

𝑇𝑎,𝑏(𝑥) =  ∫ 𝑥(𝑡)𝜓𝑎,𝑏(𝑡)𝑑𝑡

∞

−∞

, 
 (1) 

where 𝑎 𝑎𝑛𝑑 𝑏 refer to the scale and location variables (real numbers) and 𝜓𝑎,𝑏  is defined as   

𝜓𝑎,𝑏(𝑡) =  
1

√𝑎
 𝜓 (

𝑡−𝑏

𝑎
).  (2) 

Depending on the way we sample the parameters 𝑎 𝑎𝑛𝑑 𝑏, we get either a continuous wavelet transform (CWT) or a discrete 

wavelet transform (DWT). A natural way to sample 𝑎 and 𝑏 is to use a logarithmic discretization of the scale and link this in 10 

turn to the size of steps taken between b locations. This kind of discretization of the wavelet has the form  

 𝜓𝜆,𝑞(𝑡) =  
1

√𝑎0
𝜆

𝜓 (
𝑡−𝑞𝑏𝑜𝑎𝑜

𝜆

𝑎𝑜
𝜆 ), 

 (3) 

Where the integers 𝜆 and q control the wavelet dilation and translation respectively; 𝑎𝑜  is a specified fixed dilation step 

parameter and 𝑏𝑜 > 0 is the location parameter. The general choices of the discrete wavelet parameters 𝑎𝑜 and 𝑏𝑜 are 2 and 1, 

respectively. This is known as dyadic grid arrangement. 

Using the dyadic grid wavelet, the DWT can be written as  15 

𝑇 𝜆,𝑞 = ∫ 𝑥(𝑡) 
1

√𝑎𝑜
𝜆

 𝜓(
𝑡−𝑞𝑏𝑜𝑎0

2

𝑎𝑜
𝜆 )

∞

−∞
𝑑𝑡   Substituting 𝑎0 = 2 𝑎𝑛𝑑 𝑏𝑜 = 1; we get 

𝑇 𝜆,𝑞 = ∫ 𝑥(𝑡). 2−𝜆 2⁄  𝜓(2−𝜆𝑡 − 𝑞)𝑑𝑡

∞

−∞

, 

 

(4) 

where 𝑇𝜆,𝑞 are the discrete wavelet transform values given on a scale-location grid index λ and q. For the DWT, the values 

𝑇𝜆,𝑞 are known as wavelet coefficients or detail coefficients.  

The decomposition of the dyadic discrete wavelet is also associated with the scaling function 𝜙𝜆,𝑞(𝑡), (eq. 5) which represents 

the smoothing of the signal and has the same form as the wavelet, given by (Addison 2005) 

𝜙𝜆,𝑞(𝑡) = 2−
𝜆
2 𝜙(2−𝜆𝑡 − 𝑞) 

 

(5) 
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The scaling function is orthonormal to the translation of itself, but not to the dilation of itself. 𝜙𝜆,𝑞(𝑡) can be convolved with 

the signal to produce approximation coefficients at a given scale as follows: 

𝐴𝜆,𝑞 =  ∫ 𝑥(𝑡)𝜙𝜆,𝑞(𝑡)𝑑𝑡
∞

−∞
 

                                        (6) 

The approximation coefficients at a specific scale 𝜆  are known as a discrete approximation of the signal at that scale. As 

proven in (Mallat 1989), the wavelet function and the scaling function form multi- resolution bases resulting in a pyramidal 

algorithm. The decomposition methodology is schematically shown in Figure 2.  5 

In this study, to calculate the synchronization at multiple scales we only consider the approximation coefficients (not detail 

coefficients) at that particular scale because the aim is to separate the effects of time-localized features and high frequency 

components from the signal.  

For different 𝜆 = 1,2,3 …, the approximation coefficients 𝐴𝜆 correspond to the "coarse-grained" original signal after removal 

of the details at scales 𝜆, 𝜆 − 1, … ,1. In practical terms, considering a daily climatic time series at 𝜆 = 0, the time series 10 

represents the original observations. At 𝜆 = 1, A1 represents the features beyond the 2-day scale (wavelet scale) which is 

obtained by extracting T1 (2-day features) from the original time series. Similarly, at 𝜆 = 3, A3 represents the climatic variable 

beyond the 8-day scale and is obtained after removing T1, T2, T3 (2, 4, 8 day features) from the original signal. In essence, A1, 

A2, A3,… represent the original signal at different time scales.  

For simplicity we denote the approximation coefficient 𝐴𝜆,𝑞 of the signal 𝑥(𝑡) at scale 𝜆 as 𝑥𝜆.  15 

2.2 Event synchronization 

To quantify the synchronous occurrence of events in different time series, we use the Event Synchronization (ES) method 

proposed by (Quiroga et al., 2002). ES can be used for any time series in which we can define events, such as single-neuron 

recordings, eptiform spikes in EEGs, heart beats, stock market crashes, or abrupt weather events, such as heavy rainfall events. 

In principle, when dealing with signals of different character, the events could be defined differently in each time series, since 20 

their common cause might manifest itself differently in each (Quiroga et al., 2002). ES has advantages over other time-delayed 

correlation techniques (e.g., Pearson lag correlation), as it allows us to study interrelations between series of non-Gaussian 

data, data with heavy tails, or using a dynamical (non-constant) time delay (Tass et al., 1998; Stolbova et al., 2014). The latter 

refers to a time delay that is dynamically adjusted according to the two time series being compared, which allows for better 

adaptation to the region of interest. Furthermore, ES has been specifically designed to calculate nonlinear linkages between 25 

time series. Various modifications of ES have been proposed, such as solving the problems of boundary effects and bias due 

to an infinite number of events (Stolbova et al., 2014; Malik et al., 2012; Rheinwalt et al., 2016).  

The modified algorithm proposed by (Stolbova et al., 2014; Malik et al., 2012; Rheinwalt et al., 2016) works as follows: An 

event occurs in the signals 𝑥(𝑡) and 𝑦(𝑡) at time 𝑡𝑙
𝑥 and 𝑡𝑚

𝑦
, where 𝑙 = 1,2,3,4 … 𝑆𝑥, 𝑚 = 1,2,3,4 … … 𝑆𝑦, and  𝑆𝑥 & 𝑆𝑦 are the 

total number of events, respectively. In our study, we derive events from a more-or-less continuous time series by selecting all 30 
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time steps with values above a threshold (𝛼 percentile). These events in 𝑥(𝑡) and 𝑦(𝑡) are considered as synchronized when 

they occur within a time lag ±𝜏𝑙𝑚
𝑥𝑦

 which is defined as follows:  

 
(7) 

This definition of the time lag helps to separate independent events, as it is the minimum time between two succeeding events. 

Then we count the number of times C(x|y) an event occurs in 𝑥(𝑡) after it appears in 𝑦(𝑡) and vice versa (C(y|𝑥)):  

𝐶(𝑥|𝑦) = ∑ ∑ 𝐽𝑥𝑦

𝑆𝑦

𝑚=1

𝑆𝑥 

𝑙=1

 

and 

 

(8) 

 

 

 

(9) 

𝐶(𝑦|𝑥) is calculated analogously but with exchanged x and y. From these quantities we obtain the symmetric measure: 5 

𝑄𝑥𝑦 =
𝐶(𝑥|𝑦) + 𝐶(𝑦|𝑥)

√(𝑆𝑥 − 2)(𝑆𝑦 − 2)
 

 

(10) 

𝑄𝑥𝑦  is a measure of strength of event synchronization between signal 𝑥(𝑡) and  𝑦(𝑡). It is normalized to 0 ≤ 𝑄𝑥𝑦 ≤ 1, with 

𝑄𝑥𝑦 = 1 for perfect synchronization (coincidence of extreme events) between signals 𝑥(𝑡) and  𝑦(𝑡).  

 

2.3 Multi-scale event synchronization (MSES) 

Next, we propose to combine both approaches (DWT and ES) to analyze synchronization at multiple temporal scales. Recalling 10 

eq. 6, the scale-wise approximation at different scales 0, 1,2, … , λ for any given time series x(t) is given by: 

xλ = Aλ,q =  ∫ x(t)ϕλ,q(t)dt
∞

−∞

 
(11) 

where xλ represents the approximation coefficients of signal x(t) at scale λ. At that scale we extract an event series out of it 

which is merely a time series that includes only extreme events. However, ES is not limited to this definition of events. It could 

also be applied to time series which are pure event time series (e.g. heart beats).  

To determine the synchronization between two time series x(t)  and  y(t) at multiple scales, the event synchronization is 15 

estimated between the scaled versions of x(t) and y(t) for different λ  resulting in the multi-scale event synchronization 

(MSES). The normalized strength of MSES between the signals x(t) and y(t) at scale λ is then defined as: 

Qxλ,yλ =
C(xλ|yλ)  + C(yλ|xλ) 

√(Sxλ
− 2)(Syλ

− 2)
 

 

(12) 

 1 1 1 1,  ,  , } / 2xy x x x x y y y y

lm l l l l m m m mmin t t t t t t t t        

1    0

1
             

2

0  ,

x y xy

l m lm

x y

xy l m

if t t

J if t t

else

   


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Qxλ,yλ = 1 for perfect synchronization, and Qxλ,yλ = 0 suggests the absence of any synchronization at scale λ between x(t) 

and  y(t). 

2.4 Significance test for MSES 

To evaluate the statistical significance of ES values, a surrogate test will be used (Rheinwalt et al., 2016). We randomly 

reshuffle each time series 100 times (an arbitrary number). Reshuffling is done without replacement because estimating the 5 

expected number of simultaneous events in independent time series is equivalent to the combinatorial problem of sampling 

without (Rheinwalt et al., 2016). Then, for each pair of time series, we calculate the MSES values for the different scales. At 

each scale, the empirical test distribution of the 100 MSES values for the reshuffled time series is compared to the MSES 

values of the original time series. Using a 1% significance level, we assume that synchronization cannot be explained by 

chance, if the MSES value at a certain scale of the original time series is larger than the 99th percentile of the test distribution. 10 

3 Data and study design to test MSES 

The proposed method is tested using synthetic and real-world data. The aim of these tests is to understand whether MSES is 

advantageous, compared to ES, in understanding the system interaction and the scale-emerging natural processes. 

3.1 Testing MSES with synthetic data 

 15 

Following the approach of (Rathinasamy et al., 2014; Yan and Gao 2007; Hu and Si 2016), we test MSES using a set of case 

studies including stationary and non-stationary synthetic data. The details of the case studies and the wavelet power spectra 

are given in Table 1 and Figure 3, respectively.  

Case I: A single synthetic stationary time series (S) is generated and contaminated with two random white noise time series. 

Two sub-cases with different noise-to-signal ratios are investigated (Table 1). This case allows understanding how the 20 

synchronization between two series is affected by the presence of noise or high frequency features. For climate variables such 

situations can emerge when two signals originate from the same parent source or mechanism (e.g. identical large-scale climatic 

mode, identical storm tracks) but get covered by high frequency fluctuations arising from local features.  

Case II (a): Here we generate two stationary signals consisting of partly shared long-term oscillations and autoregressive (AR1) 

noise St (see Tab. 1). The long-term oscillations y1, y2, y3 and y4  have periods of 16, 32 , 64 and 128 units, respectively 25 

(Figure 3, Panel I). The purpose of case II (a) is to test the ability of MSES to identify synchronization in processes which 

originate from different parent sources or different mechanisms (e.g. two different climatic process, different storm tracks) but 

have some common features (y1 and y4) at coarser scales.  
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Case II (b) presents two signals having no common features across all scales. Feature 𝑦2 in the signal 𝑆1 and feature y4 in the 

signal S2 represent a long-term oscillation of period 32 and 128 units, respectively. The idea is to investigate the possibility of 

overprediction of synchronization if we analyse at one scale only.  

Case III: Here, MSES is tested using non-stationary signals generated as proposed by (Yan and Gao 2007; Hu and Si 2016), 

The signal encompasses five cosine waves (z1 to z5), whereas the square root of the location term results in a gradual change 5 

in frequency. Two combinations are generated of which case III(a) investigates the ability of MSES to deal with non-

stationarity signals. Case III(b) examines the capability of MSES to capture processes emerging at lower scales (in this case at 

scale 5 and 6) in the presence of short-lived transient features. For both combinations, the signal is contaminated with white 

noise.  

The time series of case III have features that are often found in climatic and geophysical data, where high-frequency, small-10 

scale processes are superimposed on low-frequency, coarse-scale processes (Hu and Si 2016). Such structures are widespread 

in time series of seismic signals, turbulence, air temperature, precipitation, hydrologic fluxes or the El Niño Southern 

Oscillation. They can also be found in spatial data, e.g. in ocean waves, seafloor bathymetry or land surface topography (Hu 

and Si 2016). 

3.2 Testing MSES with real-world data 15 

For testing MSES with real-world data, we use precipitation data from stations in Germany (Figure 4). 110 years of daily data, 

from 1 January 1901 to 31 December 2010, are available from various stations operated by the German Weather Service. Data 

processing and quality control were performed according to (Österle et al., 2006). 

Case IV: We use daily rainfall data from the three stations Kahl/Main, Freigericht-Somborn and Hechingen (Station ID: 20009, 

20208, and 25005). Considering Kahl/Main (station 1) as reference station, the distance to the two other stations Freigericht-20 

Somborn (station 2) and Hechingen (station 3) are 14.88km and 185.62km, respectively (Figure 4). Rainfall is a point process 

with large spatial and temporal discontinuities ranging from very weak to strong events within small temporal and spatial 

scales (Malik et al., 2012). This case explores the ability of MSES, in comparison to ES, to improve the understanding of 

synchronization given such time series features. 

4 Results 25 

To evaluate the synchronization between two signals, which can be expressed in terms of events, at multiple scales, we 

decompose the given time series in up to 7 scales (𝜆 = 7). The reason to limit the decomposition to scale 7 ( 𝜆 = 7) is that the 

variability in the energy distribution almost vanishes beyond that scale. We use the Haar wavelet, as this is one of the simplest 

but basic mother wavelets. There are several other mother wavelets which could be used for wavelet decomposition, however, 

it has been demonstrated that the choice of the mother wavelets does not affect the results to a great extent for rainfall 30 

(Rathinasamy et al., 2014).  
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In case I (a) the 𝑛𝑜𝑖𝑠𝑒 𝑠𝑖𝑔𝑛𝑎𝑙⁄  ratio is quite high in the range of 2.7-3 (Table 1), such that the effect of the noise is felt up to 

scale 7 (Figure 5). Although both signals stem from the same parent source and hence ideally they should possess perfect 

synchronization (ES~1) at all scales, the ES value at the observational scale (𝜆 = 0)  is moderate (~ 0.7), leading to the 

interpretation that both signals are only weakly synchronized. In contrast, the proposed MSES approach is able to capture the 

underlying features (which were hidden in the original signal) at higher scales  (𝜆 ≥ 1) by approaching ES values of 1, 5 

indicating the actual synchronization between these signals. At the scale 𝜆 = 0 the ES measure is lower because of the heavy 

noise covering the underlying information. Considering higher scales, the effect of noise is removed through wavelet 

decomposition, allowing for a more reliable identification of the actual underlying synchronization between the signals. 

Interestingly, the slight decrease in the ES values at high scale (𝜆 ≥ 7) (Figure 5) might indicate that the essential feature that 

is responsible for the synchronization at that scale gets removed in form of a detail component (Figure 2a, b). If features are 10 

present at a particular scale 𝜆 and when we go up to the next scale (𝜆 + 1), those features get removed in the form of the details 

and essentially the synchronization is lost at the scale 𝜆 + 1. 

While repeating the same analysis but with a lower 𝑛𝑜𝑖𝑠𝑒 𝑠𝑖𝑔𝑛𝑎𝑙⁄  ratio (i.e. case I(b)), we find that the effect of noise is almost 

completely removed after (𝜆 > 3) and the MSES values remain unaltered because of the same signal structure (Figure 5). 

These findings confirm that the MSES approach is able to capture the synchronization in the presence of noise.  15 

The significance test (Section 2.4) underlines the high level of synchronization as indicated by the quite high ES values (Figure 

5). Based on this example we find that the MSES analysis captures the synchronization at multiple scales.  

Case II (a) presents a system where synchronization between two signals exists at a common long term frequency (y1 and y4). 

This is particularly relevant in studying the rainfall processes of two different regions, which are governed by different local 

climatic processes but similar long-term oscillations such as ENSO cycles. The MSES values (𝜆 = 0 𝑡𝑜 7) are smaller than 20 

the confidence level except for scales 4 and 7 (Figure 6). The synchronization emerging at scale 4 (𝜆 = 4) and scale 7 (𝜆 = 7) 

correspond to features present at those scales shown in the wavelet power spectrum (Figure 3, Panel I). The thick contour in 

the WPS indicates the presence of significant features (at 5% significance level) corresponding to 𝑦1, 𝑦2, 𝑦3 and 𝑦4 (Table 

1). In the same figure, the dashed curve represents the cone of influence (COI) of the wavelet analysis. Outside of this region 

edge effects become more influential. Any peak falling outside the COI has presumably been reduced in magnitude due to 25 

zero padding necessary to deal with the finite length of the time series. To test the statistical significance of WPS, a background 

Fourier spectrum is chosen (Addison 2005; Agarwal et al., 2016). 

For case II(b), we would expect that the ES value should be zero or nonsignificant at scale 𝜆 = 0. However, we find that the 

synchronization between S1 and S2 at scale 𝜆 = 0  is significant (Figure 7), although there is no common feature by 

construction (Figure 3, Panel II). 30 

Interestingly, the MSES does not find significant synchronization at any scale (𝜆 > 0). Moreover, the MSES values become 

zero after scale 4 because the signals S1 and S2 have no common feature beyond these scales. 
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As seen clearly, the ES at only one scale over predicts the actual synchronicity between the two series. This behaviour may be 

due to the integrated effect of all scales and hence some spurious synchronization (although rather small but still significant) 

is indicated.  

Case III(a) is used as an analogue of dynamics and features of natural processes (Table 1). Its WPS (Figure 3 Panel III) shows 

non-stationary, time-dependent features at higher scales 2 ≤ 𝜆 ≤ 6. ES values at lower scales 𝜆 ≤ 1 are below the significance 5 

level, revealing that the two signals are not synchronized (Figure 8). The ES for the signal components of the larger time scales 

reveals significant synchronization of scales up to scale 6, which is expected because of the common features (scale 2 to scale 

6) in S1 and S2. After scale 𝜆 =6, the MSES value drops below the significance level as the features responsible for 

synchronization are removed in form of the details component during decomposition. This shows the wavelet’s ability in 

converting a non-stationary time series into stationary components at coarser scales. 10 

The similar case III(b) is used to investigate the behaviour of MSES in a scale-emerging process in a non-stationary regime 

(Table 1). As the wavelet spectrum of the signal reveals, only features at scales 5 and 6 are present (Figure 3 Panel IV). The 

corresponding MSES values are significant only at those scales (Figure 9), revealing the synchronization at scales 5 and 6. 

This example demonstrates the potential of MSES to provide additional information for time series with scale-emerging 

processes.  15 

After testing the efficacy of the proposed MSES approach by using some prototypical situations, we apply the approach to real 

observed rainfall data (Case IV). We find significant ES values between station 1 and station 2 at the scales 𝜆 = 1, 5 & 7 

(Figure 10a) tracking the features present in the WPS (Figure 10 c, d & e). The significant ES value at observational scale 

(𝜆 = 0) might be due to the integrated effect of features present at coarser scales (𝜆 = 1, 5 & 7). In order to emphasize the 

features present in the data, we use the global wavelet spectrum (Figure 10 f,g&h) which is defined as the time average of the 20 

WPS (Agarwal et al., 2016; Mallat 1989). 

Applying ES in the traditional way, i.e. analysing only at scale 0, we find synchronization. However, only when we consider 

multiple scales, we are able to find that the synchronization is the result of high and low frequency components present at 

scales 1, 5, and 7.  

For station 1 and station 3 synchronization is significant at scale 7 (𝜆 = 7) (Figure 10b). However, evaluating the ES in the 25 

traditional way (i.e. 𝜆 = 0) leads to the conclusion that both stations are not significantly synchronized. Here, MSES play a 

critical role in identifying synchronization at specific temporal scales. Hence, MSES provides further insights into the process, 

such as low-frequency features that are present and the dominating scales causing the significant synchronization at scale 0.  

The results for the real-world case study suggest that proximity of stations (station 1 and station 2) does not necessarily indicate 

synchronization at all scales. For the stations 1 and 3, which are comparatively far from each other, we find insignificant 30 

synchronization at the observational scale.  However, considering the scales separately MSES detects significant 

synchronization at scale 7 as both stations might be sharing some common climatic cycle at this scale. 
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5 Discussion 

We have compared our novel MSES method with the traditional ES approach by systematically applying both methods to a 

range of prototypical situations. For the test cases I and II we find that the ES value at the observation scale is influenced by 

noise, thereby reducing the ES values of two actually synchronized time series. When using MSES, the synchronization 

between the two time series can be much better detected even in the presence of strong noise. Another important aspect related 5 

to the analysis of these cases is that MSES has the ability to unravel synchronization between two stationary systems at time 

scales which are not obvious at the observation scale (scale-emerging processes). From these observations, it becomes clear 

that (i) event synchronization only at a single scale of reference is less robust, and (ii) the dependency measure of two given 

processes based on ES changes with the time scale depending on the features present in these processes.  

Case study III illustrates that for a non-stationary system with synchronization changing over temporal scales, the single-scale 10 

ES is not robust. In contrast, MSES uncovers the underlying synchronization clearly. MSES is able to track the scale-emerging 

processes, scale of dominance in the process, features present.  

The real-world case study IV shows that the synchronization between climate time series can differ with temporal scales. The 

strength of synchronization as a function of temporal scale might result from different dynamics of the underlying processes. 

MSES has the ability to uncover the scale of dominance in the natural process.  15 

Our series of test cases confirms the importance to apply a multi-scale view in order to investigate the relationship between 

processes that exist at different time scales. We suggest that investigating synchronization just at a single, i.e. observational, 

scale, gives limited insight. The proposed extension offers the possibility to decipher synchronization at different time scales, 

which is important in the case of climate systems where feedbacks and synchronization occur only at certain time scales and 

are absent at other scales. 20 

6 Conclusion 

We have proposed a novel method which combines wavelet transforms with event synchronization, thereby allowing to 

investigate the synchronization between event time series at a range of temporal scales. Using a range of prototypical situations 

and a real-world case study, we have shown that the proposed methodology is superior compared to the traditional event 

synchronization method. MSES is able to provide more insight into the interaction between the analysed time series. Also, the 25 

effect of noise and local disturbance can be reduced to a greater extent and the underlying interrelationship becomes more 

prominent. This is attributed to the fact that wavelet decomposition provides a multi-resolution representation which helps to 

improve the estimation of synchronization. Another advantage of the proposed approach is its ability to deal with non-

stationarity. Wavelets being made on local bases can pick up the non-stationary, transient features of a system thereby 

improving the estimation of ES. Finally, it can be concluded that the proposed method is more robust and reliable than the 30 

traditional event synchronization in estimating the relationship between two processes.  
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Figures 
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Figure 1: Scheme of Multi-Scale Event Synchronization (MSES) analysis 

 

 

 10 
 

 

Figure 2: Discrete wavelet transformation methodology. Left: detailed and scaling coefficient mechanism; right: dyadic 

decomposition mechanism (Source: Addison, 2002). 
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Panel I : for case II(a) 

 

Panel II: for case II(b) 

 

Panel III: for case III(a) 

 

 Panel IV: for case III(b) 

 
Figure 3: Wavelet Power Spectra (WPS) of the test signals (Tab. 1). Panel I: original signal S1 (left) and S2 (right) 

respectively for case II(a); Panel II: original signal S1 (left) and S2 (right) respectively for case II(b); Panel III: original 

signal S1 for case III(a); Panel IV:  original signal S1 for case III(b); 
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Figure 4:  Geographical location of rainfall stations considered in case study IV 

 

 

 5 

.   

Figure 5: MSES values for case I (a) and (b) including significance test values for significance level of 1%. The value at scale 0 is 

equal to the single-scale ES analysis.  
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 5 
Figure 6: MSES and significance level (1%) values at different scales for case II(a). The value at scale 0 is equal to the single-scale 

ES analysis. 

 

 

 10 
 

 

 

 

Figure 7: MSES and significance level (1%) at different scales for case II(b). The value at scale 0 is equal to the single-scale ES 15 
analysis. 
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Figure 8: MSES values and significance level (1%) at different scales for case III(a). The value at scale 0 is equal to the single-scale 

ES analysis. 
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Figure 9: MSES values and significance level (1%) at different scales for case III(b). The value at scale 0 is equal to the single-scale 

ES analysis. 
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Figure 10: (a) and (b) MSES and significance level (1%) values at various scales for station 1 and 2 and station 1 and 3, respectively; 

(c), (d) and (e) WPS of precipitation of station 1(c), 2(d) and 3(e) (Station ID: 20009, 20208, 25005), respectively; (f), (g) and (h) 5 
global wavelet spectrum of the same stations. 
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Table 1: Details of synthetic test cases  

Case Mathematical expression Other details References and 

figures 

I (a) Sinusoidal stationary signal  

S1 = S + Strong noise1 

S =  sin((2πt)/50) + cos((2πt)/60)} 
𝑁𝑜𝑖𝑠𝑒1

𝑠𝑖𝑔𝑛𝑎𝑙
~2.8 

Rathinasamy et al., 

2014  

I(b) Sinusoidal stationary signal  

S2 = S + Weak noise2 

𝑁𝑜𝑖𝑠𝑒2

𝑠𝑖𝑔𝑛𝑎𝑙
~.5 

Rathinasamy et al., 

2014 

II (a) Stationary signal (S1&S2) 

𝑆1 = 𝑆𝑡1
+ 𝑦1 + 𝑦2 + 𝑦4 ; 

𝑆2 = 𝑆𝑡2
+ 𝑦1 + 𝑦3 + 𝑦4  

Two AR1 process  𝑆𝑡 = ∅𝑆𝑡−1 + 𝜖𝑡  

𝜀𝑡 = 𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑜𝑖𝑠𝑒 

Parameter {∅1 = .60; ∅2 = .70} 

y1 = sin (
2πt

16
) ; y2 = sin (

2πt

32
) ; 

y3 = sin (
2πt

64
) ; y4 = sin (

2πt

128
); 

Where t=1,2,3,…..40177 

 

Yan and Gao, 2007; 

Hu and Si, 2016 

Figure 3: Panel I 

II (b) Stationary dataset (S1&S2) 

𝑆1 =  𝑦2 + 𝑆𝑡1 

𝑆2 =  𝑦4 + 𝑆𝑡2  

Yan and Gao, 2007; 

Hu and Si, 2016 

Figure 3: Panel II 

III (a) 

Non-stationary dataset 

S1 = z1 + z2 + z3 + z4
+ z5 

𝑆2 = 𝑆1 + 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑜𝑖𝑠𝑒 

 (𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡ed) 
𝑛𝑜𝑖𝑠𝑒

𝑠𝑖𝑔𝑛𝑎𝑙
 ~2.781;  

Where t=1,2,3,…..40177 

Z1 = cos (500π (
t

1000
)

.5

) , Z2 = cos (250π (
t

1000
)

.5

),  

Z3 = cos (125π (
t

1000
)

.5

) , Z4 = cos (62.5π (
t

1000
)

.5

), 

Z5 = cos (31.25π (
t

1000
)

.5

),  

Yan and Gao, 2007; 

Hu and Si, 2016 

Figure 3: Panel III 

III (b) 

Non-stationary dataset 

S1 = z4 + z5 

𝑆2 = 𝑆1 + 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑜𝑖𝑠𝑒  
(𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑) 
𝑛𝑜𝑖𝑠𝑒

𝑠𝑖𝑔𝑛𝑎𝑙
 ~21.5664 ; Where 

t=1,2,3,…..40177 

Z4 = cos (62.5π (
t

1000
)

.5

), Z5 = cos (31.25π (
t

1000
)

.5

),  

 

Yan and Gao, 2007; 

Hu and Si, 2016 

Figure 3: Panel IV 
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